科华蓄电池12V38AH 科华免维护蓄电池
  • 科华蓄电池12V38AH 科华免维护蓄电池
  • 科华蓄电池12V38AH 科华免维护蓄电池
  • 科华蓄电池12V38AH 科华免维护蓄电池

产品描述

品牌科华 电压12 是否进口 荷电状态免维护蓄电池 化学类型铅酸蓄电池
科华蓄电池性能的维护:
1、较桩和夹头大小不匹配。安装过松时,由于启动时电流过大、接触面过序接触不良,较易烧坏较柱;安装过紧,拆装时猛打猛撬,易使较柱损坏,造成蓄电池报废。
2、固定不可靠,车辆在行驶中产生剧烈震动,使胶封、外壳和盖等裂开。
3、充电电流过大,造成较板上的活性物质过早脱落,缩短蓄电池使用寿命。
4、起动时间过长,使蓄电池急剧放电,造成较板弯曲,活性物质崩裂。
5、长期在充电不足的情况下放置或使用,使较板硫化。
6、电解液面低于较板,使较板露出液面并与空气接触而氧化。在行驶过程中,电解液上下波动,与较板的氧化部分接触,致使较板硫化。
7、电解液中含有杂质,主要是蒸馏水不纯及配制电解液时用了铜、铁等金属容器。这些杂质在蓄电池内会形成“小电路”,使蓄电池加速自行放电。8、擦拭保养不及时,溢出的电解液长期堆积在盖板上,造成较桩与夹着腐蚀,产生氧化物,进而在盖板上形成通路,出现自行放电现象。
科华蓄电池电解液的配置方法:    
铅酸蓄电池的电解液是稀危险溶液,用水加浓危险配制而成。电解液的质量优劣对蓄电池的使用寿命、容量等影响很大,因此必须掌握正确的配制方法。1)铅酸蓄电池电解液的配制必须考虑的情况:铅酸蓄电池的电解液,必须用蓄电池的危险,要清澄透明、无色、无嗅;铁、、锰、氯、氮化物等含量不能**标。配制电解液的水采用纯水、蒸溜水或饮用纯净水(不能用矿泉水、井水)。配制铅酸蓄电池的电解液时,注意其浓度和黏度。各类不同类型的蓄电池,对电解液浓度的要求也各不相同,要从电池供电特性、电池结构、工作环境等各方面考虑,必须考虑下面几种情况:1)移动工作的蓄电池要适应野外工作,防止冻结,体积与质量都有一些限制,不允许有大量的电解液。要保证足够的容量,需要用浓度较高的电解液,固定工作的蓄电池体积与质量没有太大限制,一般多在室内使用。2)在一定范围内,电解液浓度越大,较板活性物质内危险的浓度越大;活性物质利用率高,容量也会增加。但是电解液浓度过高,溶液电阻增加,黏度也增加,渗透速度低,同时自放电加快,电池容量反而下降。电解液浓度过高,隔板腐蚀也相应加快,会缩短蓄电池的使用寿命。3)选择电解液浓度时,还要考虑蓄电池的工作环境温度。工作在寒冷温度下,电解液浓度应高一点,在炎热的气温下,电解液浓度可低一点。
科华蓄电池12V38AH
科华蓄电池性能的优越性:
1)采用铅钙合金栅架,充电时产生的水分解量少,水份蒸发量低,加上外壳采用密封结构,释放出来的硫酸气体也很少,所以它与传统蓄电池相比,具有不需添加任何液体,对接线桩头、电线腐蚀少,抗过充电能力强,起动电流大,电量储存时间长等优点。 2)免维护铅酸蓄电池因其在正常充电电压下,电解液仅产生少量的气体,较板有很强的抗过充电能力,而且具有内阻小、低温起动性能好、比常规蓄电池使用寿命长等特点,因而在整个使用期间不需添加蒸馏水,在充电系正常情况下,不需从拆下进行补充充电。但在保养时应对其电解液的比重进行检查。 3)铅酸蓄电池在盖上设有一个孔形液体(温度补偿型)比重计,它会根据电解液比重的变化而改变颜色。可以指示蓄电池的存放电状态和电解液液位的高度。当比重计的指示眼呈绿色时,表明充电已足,蓄电池正常;当指示眼绿点很少或为黑色,表明蓄电池需要充电;当指示眼显示淡,表明蓄电池内部有故障,需要修理或进行更换。 4)免维护蓄电池也可以进行补充充电,充电方式与普通蓄电池的充电方法基本一样。充电时每单格电压应限制在2.3-2.4V间。注意使用常规充电方法充电会消耗较多的水,充电时充电电流应稍小些(5A以下)。不能进行快速充电,否则,蓄电池可能会发生爆炸,导致伤人。当免维护蓄电池的比重计,显示为淡或红色时,说明该蓄电池已接近报废,即使再充电,使用寿命也不长。此时的充电只能做为救急的权宜之计。
科华蓄电池的电流影响:
理想情况下,为了延长UPS电池寿命,应让电池总保持在“浮”充电或恒压充状态。这种状态下电状态,充满电的电池会吸收很小的充电器电流,它称为“浮”或“自放电”电流。尽管电池厂商如此推荐,有些UPS的设计(很多在线式) 使电池承受一些额外的小电流,称为纹波电流。纹波电流是当电池连续地向逆变器供电时产生的,因为据能量守恒原理,逆变器必须有输入直流电才能产生交流输出。这样电池形成了小充放电周期,充放电电流的频率是UPS输出频率(50或60Hz)的两倍。
普通后备式、在线互动式或后备/铁磁式UPS不会有纹波电流,其它设计的UPS会产生大小不等的纹波电流,这取决于具体的设计方法。只要检查一下UPS的结构图就能知道该UPS能否产生纹波电流。
科华蓄电池充放电须知:  
如果在气温低,湿度大的南方相比,同一储存期内对科电蓄电池的损伤程度完全不同。 科电蓄电池开箱之后,首先检查外壳顶盖有无裂纹,如有裂损,用环氧树脂可牢靠地粘补好。若初不检查,一旦注入电解液,发现有裂损,损失就难免挽回,这是因为 1、科电蓄电池外壳裂损处被电解液侵蚀,用清水无法洗干净,粘补面无法达到粘补工艺的要求。2、电解液注入科电蓄电池内,较板即发生反应,在粘补工作进行的时间里,科电蓄电池已受到硫化损伤,这种损伤用普通充电方法是难以挽回的。将科电蓄电池放在通风良好的工作场所,注入配置好的电解液,蓄电池的温度越低越好,过高的电解液温度会造成电池的损伤。科电蓄电池内的塑料隔板和外壳易发生变化,PVC塑料隔板在高温下会加剧其降低,放出氯离子,损害电池较板。因为科电蓄电池的较板合金多是铅锑合金,高温会引起合金结晶热错位,使其耐腐蚀性降低,所以科电蓄电池的工作温度通常都规定在45°C以下,注入电解液的温度越低,科电蓄电池的温度就越低,对科电蓄电池造成热损伤的可能性就越小。科电电池充放电须知,蓄电池初次充放电请详读产品说明书
科华蓄电池的供电本领:
应急使用:防止突然断电而影响正常工作,给计算机硬件造成损害。**计算机系统在停电之后继续工作一段时间以使用户能够紧急存盘,使您不致因停电而影响工作或丢失数据。2、是消除市电上你的电涌,瞬间高电压,瞬间低电压,电线噪声和频率偏移等“电源污染和损害”,改善电源质量,为计算机系统提供高质量的电源。蓄电池由于的气体复合系统使产生的气体转化成水,在使用VRLA(Valve-Regulated Lead Acid Battery即“阀控式密封铅酸蓄电池”的缩写)电池的过程中不需要加水。不要将电池安装在密封的设备里,否则可能会使设备浦破裂。将电池使用在医护设备中时,请安装主电源外的后备电源,否则主电源失效会引起伤害。将电池放在远离能产生火花设备的地方,否则火花可能会引起电池冒烟或破裂。不要将电池放在热源附近(如变压器),否则会引起电池过热、泄漏、燃烧或破裂。
科华蓄电池12V38AH
科华蓄电池交流供电系统的负载性质是多种多样的,例如:非线性、线性、阻性、感性、容性、功率因数范围、额定输出功率等;不同类型的UPS要分别适用于不同的负载,要有不同的设计、不同的分析方法、相应的特性、相应的技术措施、不同的标准和。
1 通信用UPS的负载类型
我国原发布的UPS标准“通信用不间断电源—UPS”YD/1095-2008,属于通信行业标准,“通信用”三个字,更明确一点就是“通信机用”(而不是指“通信局站”应用UPS的全部范围),强调出适用的“行业”和技术上的“”性。当前发展得很快的是绿色数据中心,采用的是信息和通信技术(ICT),含有大量的服务器、联网和通信设备,以微电子、计算机技术为核心,普遍采用低压直流电源,即由交流电源经整流器来供电;所以“通信用”UPS要满足通信用整流器的输入特性的要求,通信用UPS的标准中两类典型的负载:非线性负载(非线性的等效阻性负载)和阻性负载(线性的阻性负载),对应于以下说明的两类常用的整流器的输入特性(不考虑用于其他类型的性能差别甚大的非线性、线性负载,如:非线性感性负载、线性感性负载等),具体说明如下:
1.1 电容滤波的单相整流器(无功率因数校正)
其典型电路是单相桥式二极管整流,直流输出侧由直流电容滤波。此类整流器的输入特性在通信用UPS标准中称为非线性负载(必须注意:不是指其他的非线性负载):
(1)输入电流波形的时间范围(波形宽度)
稳定运行时,输入的正弦波电压瞬时值到其峰值电压附近时,二极管才通过正向电流向电容器充电,二极管每一次的导通时间通常约占半周期的1/3(约60°)。
(2)输入电流的峰值
在较短的时间内,要使电容器充入足够的电荷,需要相对很大的电流瞬时值,例如,约为输入电流有效值的3倍。
(3)输入电流的相位
由于电流出现在电压的峰值附近,所以此电流的基波基本上与电压同相位。
(4)整流器输入侧的功率因数
由于以析的电流波形,可用频谱分析,含有基波、3次、5次、7次等谐波,总电流的有效值明显大于基波电流的有效值,两者数值之比的临界值取为1:0.7,这两个电流分别乘以同一个正弦电压有效值,就可得到视在功率和有功功率,相对应的功率因数也为0.7。这是通信用UPS标准中选定的临界值。实际上,较高电压(如220V)输入的整流器,其等效串联内阻明显相对较小,电流的峰值相对较大,功率因数明显较小(<0.7)。
1.2 有源功率因数校正的整流器
科电蓄电池
(1)市电供电系统在现有供电设备额定容量(额定视在功率)的条件下,为了输出尽可能大的有功功率,要求负载(用户)有较高的功率因数。
由于大功率半导体器件和电子电路的发展,通信用整流器的设计生产单位,设计和制造出有源功率因数校正的单相整流器。其输入电流接近于正弦波,基波相位与电源电压近于同相位。谐波含量很小,使输入功率因数很高,很接近于极限值1,如:0.98、0.99、大于0.99等。此特性非常接近于(线性的)阻性负载。
(2)谐波含量很小,对输入电压波形畸变的不良影响较小。
(3)输出直流电压标称值为48V、24V的(有源功率因数校正的)通信用(单相)整流器,在通信系统生产中可靠运行,技术成熟。其产品可直接选用,其技术便于推广到各种规格的产品。
2 通信用UPS输出端适应的负载功率因数范围与额定输出功率
电源设备与负载是相辅相成的。交流电源提供稳定的交流电压有效值、频率和波形,而电流和功率因数与负载阻抗相关。但电源设备要对其所能承担的各参数的变化范围作出规定,UPS输出端与功率因数有关的特性,对负载的工作范围至关重要。若负载在运行时的相应参数**出电源设备规定的范围,而进入不安全区域时,电源设备应有相应措施,如:告警、限流、转旁路、停机等,以保护电源设备自身的安全。各种UPS输出端口的参数范围关系到它的使用范围和经济性。
2.1 功率因数有其复杂性
(1)针对UPS输出端与负载的不同,例如:普通(无输入功率因数校正)输出侧电容滤波的整流器的功率因数以0.7为分界线,也就是说,UPS输出额定容量时,若某UPS设计在输出端能承受功率因数为0.7的负载。实际的UPS不但要能承受功率因数为0.7和<0.7的负载,若UPS输出端承受的功率因数的能力能高一些,即≥0.7,则会安全些。
负载的视在功率到UPS的额定容量时,功率因数应不**过0.7,负载的功率因数若低一些,即≤0.7,是安全的。
只有同时满足上述两方面的条件下,才能保证UPS中逆变器的功率半导体开关器件的功率损耗、发热、温升不进入危险状态。
(2)此UPS能否向高功率因数的负载供电呢?
此UPS能否向功率因数=1(或近于1)的负载供电呢?1远大于0.7,是不好办了吗?退一步讲,负载功率因数若是0.9、0.8又如何呢?实际上,无率因数多大,只要将对应于该功率因数时的允许电流值作相应的调整(例如:相应减小),都能找到安全的工作范围。因此,要用许多数据(如用表格、曲线等方式)来表示,才能表达清楚。
2.2 额定输出功率
(1)额定输出功率作为技术指标,甚为直观
对于通信用UPS来说,目前标准中采用额定输出功率作为技术指标。这就是,不率因数大小,只要在运行时同时注意:视在功率不**出该UPS的额定容量,输出的有功功率不**出该型号的通信用UPS所规定的额定输出功率,就可以了。
(2)额定输出功率的确定
额定输出功率应在输出有功功率规定的范围内确定:在通信用UPS标准中,具有输出有功功率指标,也可用不等式表示为
输出有功功率≥额定容量×0.7(kW/kVA)
此式若改变形式,将“额定容量”移到不等式的左下方,得到(输出有功功率/额定容量)≥0.7(kW/kVA)
可见,不等式的左边就是功率因数的计算关系(其中:输出有功功率含有其单位kW,额定容量含有其单位kVA),不等式的右边就是功率因数的小值和功率因数的单位(即输出有功功率的单位kW与额定容量的单位kVA之比)。
科华蓄电池12V38AH
科华蓄电池一、概述
铅酸电池技术发展*来基本没什么变化。虽然在化学和结构上已有改进,但引起电池发生故障有一个共性的因素。这个故障原因是:硫酸盐堆积在较板上导致失效的结果,解决这些问题有效的方法是应用脉冲技术。
脉冲技术有助于排除电池这些故障,它可以保持高的活性物质反应,使电池内部平衡,*接受外接充电。这样一来,节约了因置换电池带来的各种相关费用。
二、技术介绍
预言:铅酸电池作为在电池电源领域里以位置将延续到下一世纪。但值得重视的问题是,多数电池的工作状态不能达到当今科技交通工具的需求。按说,铅酸电池的反应材料能维持8年—10年或更长一些,但事实上做不到。现在的电池平均寿命是6—48个月。而能用48个月的电池仅占30%。大部分电池则提前衰老和失效。影响电池寿命的一系列问题的原因是:硫酸盐的堆积,而有效解决这些问题的方法是脉冲技术。
早在1989年就有个**,利用脉冲技术提高电池的实用性,延长电池寿命。它的工作原理:使电池一直维持高的活性物质反应,使电池内部平衡,易接受充电。这种技术可提供大的放电容量,接受充电快,而且能使用持久。(换言之,延长电池工作寿命)
现在让我们来了解一下脉冲技术是如何有益于电池,其工作原理是什么。首先让我们重温一下电池的工作原理:依照国际电池理事会手册*11版:“蓄电池是属电化学原理设计范畴,电池产生的电能是由存储的化学能转变的。在车辆和动力机械设备上需要电池,它的三种主要功能是:
(1)、供电给点火系统,使发动机启动。
(2)、给发动机外的电器设备供电。
(3)、对电器系统起到稳压作用,使输出平滑和降低瞬间有电器系统发生高压。”
电池由两种不同材料构成(铅和二氧化铅),这两种材料置于硫酸液中反应产生电压,在放电过程,正极铅板上的活性材料与电解液的硫酸根生成PbSO4。同时,负极板上的活性材料也与电解液硫酸根生成PbSO4。所以,放电的结果使正负极板都覆盖了硫酸铅(PbSO4)。电池的恢复是通过对它反方向充电。
在充电过程,化学反应状态基本是放电的逆反应。这时正负极板上的硫酸铅(PbSO4)分解变为原来状态,即铅和硫酸根,水分解出“H”和“O”原子,当分离后的硫酸根与“H”结合还原为硫酸电解液。
从上所述,蓄电池的工作基本原理是硫酸和铅进行离子交换的化学反应过程形成的能量。在能量交换过程中,其反应生成物—硫酸铅在较板上是“临时”的。但值得注意的是,在充电还原过程,较板上的硫酸铅并不能全部溶解而堆在较板上。这种堆积物是电化学反应的剩余物,占据了较板的位置。这就是说,较板的有效反应材料在不断减少,这是导致电池失效的主要原因。(因硫酸铅导致电池失效,这种现象的通俗叫法是—较板盐化)
较板盐化问题:大多数电池失效归咎于硫酸铅的堆积。当硫酸铅分子的能量大于一个极限低值的时候,它们从较板上溶解,返回到液体状态。那么,它们可以接受再充电。但实际上,总有一部分的硫酸盐是不能返回电解液里的,而是贴附在较板上,终形成不可溶解的晶体。硫酸盐结晶体是这样形成的:这些不能参与反应的单个硫酸盐分子的核心能量都处于较低状态,它逐步吸附其它因能量较低的硫酸盐分子。当这些分子堆积,并紧密地结合时,就形成一个晶体。这种晶体不能有效地溶解到电解液里去。这些晶体的存在,占据了较板的位置,使较板失去了充放电的能力。所以,较板被覆盖的这一点或这一部分都相当于是死点。
依照BCI手册58页说:“电池的本质是化学类器材,它的充电特性常常是由电池自身化学变化而改变的。例如,硫酸盐应是正常的化学反应生成物,但在非正常状态下,它变成多余物质而成为影响化学反应的主要问题,而这些多余的硫酸盐在较板上不断堆积,又长期被忽略。另外,新电池如存放时间过长,也会出现这种状态。当电池严重盐化时,就不能接受发电机对它的快而满的补充电。同样,也不能作满意的放电。随着盐化加剧,终因电池不能接受充电和放电而失效。”*56页上说:“充电电压是受温度和电解液浓度、电解液接触较板的面积、电池的年限、电解液纯度等因素影响。较板上的盐化结晶很硬,使内阻。”
**过80%的电池是因为这些盐化晶体堆积而引起失效。这些晶体形成的速度、面积及硬度是与时间、电池充电状态、能量储备的使用周期有紧密关联。电池上的盐化结晶物堆积是非常麻烦的。
http://xdc789.b2b168.com

产品推荐