品牌科华
电压12
是否进口否
荷电状态免维护蓄电池
化学类型铅酸蓄电池
科华蓄电池 交流供电系统的负载性质是多种多样的,例如:非线性、线性、阻性、感性、容性、功率因数范围、额定输出功率等;不同类型的UPS要分别适用于不同的负载,要有不同的设计、不同的分析方法、相应的特性、相应的技术措施、不同的标准和鉴定。1 通信用UPS的负载类型我国原发布的UPS标准“通信用不间断电源—UPS”YD/1095-2008,属于通信行业标准,“通信用”三个字,更明确一点就是“通信机用”(而不是指“通信局站”应用UPS的全部范围),强调出适用的“行业”和技术上的“专业”性。当前发展得很快的是绿色数据中心,采用的是信息和通信技术(ICT),含有大量的服务器、联网和通信设备,以微电子、计算机技术为核心,普遍采用低压直流电源,即由交流电源经整流器来供电;所以“通信用”UPS要满足通信用整流器的输入特性的要求,通信用UPS的标准中两类典型的负载:非线性负载(非线性的等效阻性负载)和阻性负载(线性的阻性负载),对应于以下说明的两类常用的整流器的输入特性(不考虑用于其他类型的性能差别甚大的非线性、线性负载,如:非线性感性负载、线性感性负载等),具体说明如下:1.1 电容滤波的单相整流器(无功率因数校正)其典型电路是单相桥式二极管整流,直流输出侧由直流电容滤波。此类整流器的输入特性在通信用UPS标准中称为非线性负载(必须注意:不是指其他的非线性负载):(1)输入电流波形的时间范围(波形宽度)稳定运行时,输入的正弦波电压瞬时值增大到其峰值电压附近时,二极管才通过正向电流向电容器充电,二极管每一次的导通时间通常约占半周期的1/3(约60°)。(2)输入电流的峰值在较短的时间内,要使电容器充入足够的电荷,需要相对很大的电流瞬时值,例如,约为输入电流有效值的3倍。(3)输入电流的相位由于电流出现在电压的峰值附近,所以此电流的基波基本上与电压同相位。(4)整流器输入侧的功率因数由于以析的电流波形,可用频谱分析,含有基波、3次、5次、7次等谐波,总电流的有效值明显大于基波电流的有效值,两者数值之比的临界值取为1:0.7,这两个电流分别乘以同一个正弦电压有效值,就可得到视在功率和有功功率,相对应的功率因数也为0.7。这是通信用UPS标准中选定的临界值。实际上,较高电压(如220V)输入的整流器,其等效串联内阻明显相对较小,电流的峰值相对较大,功率因数明显较小(<0.7)。1.2 有源功率因数校正的整流器 科电蓄电池 (1)市电供电系统在现有供电设备额定容量(额定视在功率)的条件下,为了输出尽可能大的有功功率,要求负载(用户)有较高的功率因数。由于大功率半导体器件和电子电路的发展,通信用整流器的设计生产单位,设计和制造出有源功率因数校正的单相整流器。其输入电流接近于正弦波,基波相位与电源电压近于同相位。谐波含量很小,使输入功率因数很高,很接近于极限值1,如:0.98、0.99、大于0.99等。此特性非常接近于(线性的)阻性负载。(2)谐波含量很小,对输入电压波形畸变的不良影响较小。(3)输出直流电压标称值为48V、24V的(有源功率因数校正的)通信用(单相)整流器,在通信系统生产中可靠运行,技术成熟。其产品可直接选用,其技术便于推广到各种规格的产品。2 通信用UPS输出端适应的负载功率因数范围与额定输出功率电源设备与负载是相辅相成的。交流电源提供稳定的交流电压有效值、频率和波形,而电流和功率因数与负载阻抗相关。但电源设备要对其所能承担的各参数的变化范围作出规定,UPS输出端与功率因数有关的特性,对负载的工作范围至关重要。若负载在运行时的相应参数**出电源设备规定的范围,而进入不安全区域时,电源设备应有相应措施,如:告警、限流、转旁路、停机等,以保护电源设备自身的安全。各种UPS输出端口的参数范围关系到它的使用范围和经济性。
科华蓄电池的测量事项:
(1)测量电池单体浮充电压
每月应测量一次电池单体浮充电压,填好测量记录并记下环境温度。可以直接用万用表手工测量,也可以通过监测设备测量。浮充电压的设置对电池的寿命具有相当重要的影响。在理论上要求浮充电压产生的电流量是用以补偿电池的自放电。浮充电压过高会引起电池正极腐蚀和失水,使电池容量下降;而浮充电压过低,也会使电池充电不足,引起电池落后,严重时会出现电极硫酸盐化。浮充电压的选择可以根据厂家说明书的要求而设定,没有说明书时也可以设置在(2.23~2.28)V·N(N为单体电池个数)。
虽然测量浮充电压并及时作出调整是蓄电池日常维护的一项重要工作,但是测量浮充电压并不能找出落后单体电池。实践证明,阀控密封铅酸蓄电池端电压与容量无相关性,从静态的浮充电压,无法准确判断出蓄电池的好坏。
(2)内阻(电导)测量
阀控蓄电池的故障,如板栅腐蚀、接触不良、活性物质可用量减少等集中表现于蓄电池内阻的增大、电导的减小,因此,电导或电阻的高低可提供反映蓄电池故障和使用程度的有效信息。
目前国际**行一种用电导测试的方法检测电池的内阻来藉此判断电池的实有容量。电导,即内部电阻的倒数,是指传导电流的能力,它反映了电阻的大小。测试方法是用交流发电装置向蓄电池单体或蓄电池组注入一个低频20~30Hz或60Hz的交流信号,测量通过电池的交流电流和每只蓄电池两端的交流电压,然后计算出I/U或Uac/Iac比率,即可得出蓄电池的电导或电阻值,并显示这个值。这一测试理论认为剩余容量和电池内阻有一定的固定关系,特别是在剩余容量不足50%时,会*下降,因而根据电池的电导或电阻值来判断电池容量有很好的一致性。
然而阀控电池的电阻组成是复杂的,包含了电池的欧姆电阻,浓差较化电阻,电化学反应电阻及双层电容充电时的*作用。在不同的量测点和不同的时刻测得的电阻值包含的组成也是不同的。另外由于内阻值为毫欧级,所以连接电缆、测试夹具、测试仪性能等都会对内阻测量产生较大的*,内阻值的真实性和准确性怎样得到**,这是需要大量实践来确定的。
在目前没有*机构或国家标准证实的情况下建议将内阻(电导)测量方式作为一种辅助测试手段判别电池性能。
(3)核对性放电
按照电力部《电力系统用蓄电池直流电源装置运行与维护技术规程》DL/T724-2000标准,新安装或大修后的阀控蓄电池组,应进行全核对性放电试验,以后每隔2~3年进行一次核对性试验,运行了6年以后的阀控蓄电池,应每年作一次核对性放电实验。
阀控蓄电池组的恒流限压充电电流和恒流放电电流均为I10。额定电压为2V的蓄电池,充电电压不**过2.4V,组合电池和蓄电池组充电电压不**过2.4V×N。额定电压为2V的蓄电池,,放电终止电压为1.8V;额定电压为6V的组合式电池,放电终止电压为5.25V;额定电压为12V的组合蓄电池,放电终止电压为10.5V。只要其中一个蓄电池放到了终止电压,应停止放电。
新验收的蓄电池,在5次充、放电循环内,当温度为25℃时,放电容量应不低于10h率放电容量的95%。(《电气装置安装工程蓄电池施工及验收规范》GB50172-92)
已投入运行的电池,在三次充、放电循环之内,若达不到额定容量值的80%,此组蓄电池为不合格。
由于缺乏有效的设备,传统放电试验,需将蓄电池组脱离运行,接上电热丝或水阻放电。通过调整电热丝或水阻,使电池组以恒定电流放电,同时用万用表每隔一定时间就须测量电池端电压一次,直至其中有一单体的端电压到达规定的终止电压时停止放电,其放电时间与放电电流的乘积即为该电池的实际容量。此种检测方法测量电池的容量数值准确,能够清晰的判别电池是否为失效电池。由于负载体积庞大,搬运不方便;放电时产生的巨大热能,导致电热丝发红,*引起安全事故;试验中至少一人测量一人记录数据,工作量过大,难于全面进行;放电快结束时,电池电压下降较快,个别电池端电压可能在两次测量间隔期间突然降至终止电压以下,造成过度放电。
科华蓄电池性能的优越性:
1)采用铅钙合金栅架,充电时产生的水分解量少,水份蒸发量低,加上外壳采用密封结构,释放出来的硫酸气体也很少,所以它与传统蓄电池相比,具有不需添加任何液体,对接线桩头、电线腐蚀少,抗过充电能力强,起动电流大,电量储存时间长等优点。 2)免维护铅酸蓄电池因其在正常充电电压下,电解液仅产生少量的气体,较板有很强的抗过充电能力,而且具有内阻小、低温起动性能好、比常规蓄电池使用寿命长等特点,因而在整个使用期间不需添加蒸馏水,在充电系正常情况下,不需从拆下进行补充充电。但在保养时应对其电解液的比重进行检查。 3)铅酸蓄电池在盖上设有一个孔形液体(温度补偿型)比重计,它会根据电解液比重的变化而改变颜色。可以指示蓄电池的存放电状态和电解液液位的高度。当比重计的指示眼呈绿色时,表明充电已足,蓄电池正常;当指示眼绿点很少或为黑色,表明蓄电池需要充电;当指示眼显示淡,表明蓄电池内部有故障,需要修理或进行更换。 4)免维护蓄电池也可以进行补充充电,充电方式与普通蓄电池的充电方法基本一样。充电时每单格电压应限制在2.3-2.4V间。注意使用常规充电方法充电会消耗较多的水,充电时充电电流应稍小些(5A以下)。不能进行快速充电,否则,蓄电池可能会发生爆炸,导致伤人。当免维护蓄电池的比重计,显示为淡或红色时,说明该蓄电池已接近报废,即使再充电,使用寿命也不长。此时的充电只能做为救急的权宜之计。
科华蓄电池的电流影响:
理想情况下,为了延长UPS电池寿命,应让电池总保持在“浮”充电或恒压充状态。这种状态下电状态,充满电的电池会吸收很小的充电器电流,它称为“浮”或“自放电”电流。尽管电池厂商如此推荐,有些UPS的设计(很多在线式) 使电池承受一些额外的小电流,称为纹波电流。纹波电流是当电池连续地向逆变器供电时产生的,因为据能量守恒原理,逆变器必须有输入直流电才能产生交流输出。这样电池形成了小充放电周期,充放电电流的频率是UPS输出频率(50或60Hz)的两倍。
普通后备式、在线互动式或后备/铁磁式UPS不会有纹波电流,其它设计的UPS会产生大小不等的纹波电流,这取决于具体的设计方法。只要检查一下UPS的结构图就能知道该UPS能否产生纹波电流。
科华蓄电池充放电须知:
如果在气温低,湿度大的南方相比,同一储存期内对科电蓄电池的损伤程度完全不同。 科电蓄电池开箱之后,首先检查外壳顶盖有无裂纹,如有裂损,用环氧树脂可牢靠地粘补好。若初不检查,一旦注入电解液,发现有裂损,损失就难免挽回,这是因为 1、科电蓄电池外壳裂损处被电解液侵蚀,用清水无法洗干净,粘补面无法达到粘补工艺的要求。2、电解液注入科电蓄电池内,较板即发生反应,在粘补工作进行的时间里,科电蓄电池已受到硫化损伤,这种损伤用普通充电方法是难以挽回的。将科电蓄电池放在通风良好的工作场所,注入配置好的电解液,蓄电池的温度越低越好,过高的电解液温度会造成电池的损伤。科电蓄电池内的塑料隔板和外壳易发生变化,PVC塑料隔板在高温下会加剧其降低,放出氯离子,损害电池较板。因为科电蓄电池的较板合金多是铅锑合金,高温会引起合金结晶热错位,使其耐腐蚀性降低,所以科电蓄电池的工作温度通常都规定在45°C以下,注入电解液的温度越低,科电蓄电池的温度就越低,对科电蓄电池造成热损伤的可能性就越小。科电电池充放电须知,蓄电池初次充放电请详读产品说明书
科华蓄电池的供电本领:
应急使用:防止突然断电而影响正常工作,给计算机硬件造成损害。**计算机系统在停电之后继续工作一段时间以使用户能够紧急存盘,使您不致因停电而影响工作或丢失数据。2、是消除市电上你的电涌,瞬间高电压,瞬间低电压,电线噪声和频率偏移等“电源污染和损害”,改善电源质量,为计算机系统提供高质量的电源。蓄电池由于的气体复合系统使产生的气体转化成水,在使用VRLA(Valve-Regulated Lead Acid Battery即“阀控式密封铅酸蓄电池”的缩写)电池的过程中不需要加水。不要将电池安装在密封的设备里,否则可能会使设备浦破裂。将电池使用在医护设备中时,请安装主电源外的后备电源,否则主电源失效会引起伤害。将电池放在远离能产生火花设备的地方,否则火花可能会引起电池冒烟或破裂。不要将电池放在热源附近(如变压器),否则会引起电池过热、泄漏、燃烧或破裂。
科华蓄电池交流供电系统的负载性质是多种多样的,例如:非线性、线性、阻性、感性、容性、功率因数范围、额定输出功率等;不同类型的UPS要分别适用于不同的负载,要有不同的设计、不同的分析方法、相应的特性、相应的技术措施、不同的标准和鉴定。
1 通信用UPS的负载类型
我国原发布的UPS标准“通信用不间断电源—UPS”YD/1095-2008,属于通信行业标准,“通信用”三个字,更明确一点就是“通信机用”(而不是指“通信局站”应用UPS的全部范围),强调出适用的“行业”和技术上的“专业”性。当前发展得很快的是绿色数据中心,采用的是信息和通信技术(ICT),含有大量的服务器、联网和通信设备,以微电子、计算机技术为核心,普遍采用低压直流电源,即由交流电源经整流器来供电;所以“通信用”UPS要满足通信用整流器的输入特性的要求,通信用UPS的标准中两类典型的负载:非线性负载(非线性的等效阻性负载)和阻性负载(线性的阻性负载),对应于以下说明的两类常用的整流器的输入特性(不考虑用于其他类型的性能差别甚大的非线性、线性负载,如:非线性感性负载、线性感性负载等),具体说明如下:
1.1 电容滤波的单相整流器(无功率因数校正)
其典型电路是单相桥式二极管整流,直流输出侧由直流电容滤波。此类整流器的输入特性在通信用UPS标准中称为非线性负载(必须注意:不是指其他的非线性负载):
(1)输入电流波形的时间范围(波形宽度)
稳定运行时,输入的正弦波电压瞬时值增大到其峰值电压附近时,二极管才通过正向电流向电容器充电,二极管每一次的导通时间通常约占半周期的1/3(约60°)。
(2)输入电流的峰值
在较短的时间内,要使电容器充入足够的电荷,需要相对很大的电流瞬时值,例如,约为输入电流有效值的3倍。
(3)输入电流的相位
由于电流出现在电压的峰值附近,所以此电流的基波基本上与电压同相位。
(4)整流器输入侧的功率因数
由于以析的电流波形,可用频谱分析,含有基波、3次、5次、7次等谐波,总电流的有效值明显大于基波电流的有效值,两者数值之比的临界值取为1:0.7,这两个电流分别乘以同一个正弦电压有效值,就可得到视在功率和有功功率,相对应的功率因数也为0.7。这是通信用UPS标准中选定的临界值。实际上,较高电压(如220V)输入的整流器,其等效串联内阻明显相对较小,电流的峰值相对较大,功率因数明显较小(<0.7)。
1.2 有源功率因数校正的整流器
科电蓄电池
(1)市电供电系统在现有供电设备额定容量(额定视在功率)的条件下,为了输出尽可能大的有功功率,要求负载(用户)有较高的功率因数。
由于大功率半导体器件和电子电路的发展,通信用整流器的设计生产单位,设计和制造出有源功率因数校正的单相整流器。其输入电流接近于正弦波,基波相位与电源电压近于同相位。谐波含量很小,使输入功率因数很高,很接近于极限值1,如:0.98、0.99、大于0.99等。此特性非常接近于(线性的)阻性负载。
(2)谐波含量很小,对输入电压波形畸变的不良影响较小。
(3)输出直流电压标称值为48V、24V的(有源功率因数校正的)通信用(单相)整流器,在通信系统生产中可靠运行,技术成熟。其产品可直接选用,其技术便于推广到各种规格的产品。
2 通信用UPS输出端适应的负载功率因数范围与额定输出功率
电源设备与负载是相辅相成的。交流电源提供稳定的交流电压有效值、频率和波形,而电流和功率因数与负载阻抗相关。但电源设备要对其所能承担的各参数的变化范围作出规定,UPS输出端与功率因数有关的特性,对负载的工作范围至关重要。若负载在运行时的相应参数**出电源设备规定的范围,而进入不安全区域时,电源设备应有相应措施,如:告警、限流、转旁路、停机等,以保护电源设备自身的安全。各种UPS输出端口的参数范围关系到它的使用范围和经济性。
2.1 功率因数有其复杂性
(1)针对UPS输出端与负载的不同,例如:普通(无输入功率因数校正)输出侧电容滤波的整流器的功率因数以0.7为分界线,也就是说,UPS输出额定容量时,若某UPS设计在输出端能承受功率因数为0.7的负载。实际的UPS不但要能承受功率因数为0.7和<0.7的负载,若UPS输出端承受的功率因数的能力能高一些,即≥0.7,则会安全些。
负载的视在功率增大到UPS的额定容量时,功率因数应不**过0.7,负载的功率因数若低一些,即≤0.7,是安全的。
只有同时满足上述两方面的条件下,才能保证UPS中逆变器的功率半导体开关器件的功率损耗、发热、温升不进入危险状态。
(2)此UPS能否向高功率因数的负载供电呢?
此UPS能否向功率因数=1(或近于1)的负载供电呢?1远大于0.7,是不好办了吗?退一步讲,负载功率因数若是0.9、0.8又如何呢?实际上,无率因数多大,只要将对应于该功率因数时的允许电流值作相应的调整(例如:相应减小),都能找到安全的工作范围。因此,要用许多数据(如用表格、曲线等方式)来表示,才能表达清楚。
2.2 额定输出功率
(1)额定输出功率作为技术指标,甚为直观
对于通信用UPS来说,目前标准中采用额定输出功率作为技术指标。这就是,不率因数大小,只要在运行时同时注意:视在功率不**出该UPS的额定容量,输出的有功功率不**出该型号的通信用UPS所规定的额定输出功率,就可以了。
(2)额定输出功率的确定
额定输出功率应在输出有功功率规定的范围内确定:在通信用UPS标准中,具有输出有功功率指标,也可用不等式表示为
输出有功功率≥额定容量×0.7(kW/kVA)
此式若改变形式,将“额定容量”移到不等式的左下方,得到(输出有功功率/额定容量)≥0.7(kW/kVA)
可见,不等式的左边就是功率因数的计算关系(其中:输出有功功率含有其单位kW,额定容量含有其单位kVA),不等式的右边就是功率因数的小值和功率因数的单位(即输出有功功率的单位kW与额定容量的单位kVA之比)。
http://xdc789.b2b168.com