科士达蓄电池6-FML-36
  • 科士达蓄电池6-FML-36
  • 科士达蓄电池6-FML-36
  • 科士达蓄电池6-FML-36

产品描述

型号6-FM-100 荷电状态免维护蓄电池 化学类型铅酸蓄电池 适用范围ups蓄电池 电压12
对阀控式铅酸蓄电池的维护需要建立的充电制度并加以实施,才能使该蓄电池达到优的性能和长的使用寿命,国内外大量研究的
对阀控式铅酸蓄电池的维护需要建立的充电制度并加以实施,才能使该蓄电池达到优的性能和长的使用寿命,国内外大量研究的结果表明,充电方式决定了蓄电池使用的寿命,有一些蓄电池与其说是使用坏的,不如说是充电方式不妥被损坏的。在这方便,国内有许多蓄电池生产厂家和科研院所或学校都做过类似的实验。例如有一个单位,将蓄电池分成了两组进行实验,一组采用普通恒压限流方式进行全容量寿命的试验,另一组则采用阶段恒流充电方式控制充电的容量,并在充电后期采用短时间中等电流冲击方式进行容量循环寿命的试验。结果,两组蓄电池因采用不同的充电方式而得到相差甚大的循环寿命,其中采用阶段恒流充电方式的蓄电池循环寿命较长。可见,目前被广泛采用的恒压限流充电方式,特别在充电后期是有相当缺憾的。由于目前使用的整流设备,特别是开关电源不具备恒流特性,采用*二种充电的方式还存在一定的困难,因此对这个问题还需要做进一步的探索。
除此之外,目前有些科研部门都在探索用脉冲充电的方式对阀控式蓄电池充电。主要的过程是将脉冲充电分成一个或几个阶段,每个阶段有数个脉冲周期。如整个过程为充电10min?停充3min?放电3s?停放1.75min,后阶段为充电15min并静止放置数h,使电解液降温等等。据说这种方法比较理想,可以消除硫酸化
理论容量
理论容量也称计算容量由电池较板所含活性物质的量决定,铅酸蓄电池的电化当量对于Pb,4价为0.517 A·h/g,2价为0.259 A·h/g,对于Pb02,4价为0.488 A·h/g,2价为0.224 A·h/g,根据电化当量与活性物质的量计算出来的容量叫做蓄电池的理论容量。
实际容量
实际容量是指蓄电池放电时所测得的容量,取决于活性物质的量及利用率,活性物质与铅板相关,但并不等同于铅重量,与利用蓄与蓄电池较板的结构形式、放电电流的大小、温度、终止电压、原材料质量及制造工艺、技术和使用方法有关,而且是变化的,当今,已知单块较板容量为100 A·h/2V。
额定容量
额定容量又称为标称容量,即在制造厂规定的条件下,蓄电池能放出的工作容量,例如,97 A·h电池标称100 A·h,有些厂家的电池则是在使用几个循环之后,实际容量达到或**出标称容量。
10.电量效率(安时效率)
输出电量与输入电量之间的比叫做电池的电量效率,也叫做安时效率。
自由放电率
由于电池的局部作用造成的电池容量的消耗,容量损失与搁置之前的容量之比,叫做蓄电池的自由放电率。
放电率
放电率表示蓄电池放电电流大小,分为时间率和电流率,放电时间率指在一定放电量上蓄电池放电至放电终止电压的时间长短,例如在25℃环境下如果蓄电池以电流It放电至放电终止电压的时间为t这一放电过程称为t小时率,放电It称为t小时率放电电流,IEC标准,放电时间率有20、10、5、3、1、0.5小时率及分钟率,放电电流率是为了比较额定容量不同的蓄电池电流大小而设立的,t小时率放电电流以It表示,通常以10小时率电流为标准I10表示。
放电终止电压
在25℃环境温度下以一定的放电率放电至能再反复充电使用的电压称为放电终止电压,一般10小时率蓄电池单体放电终止电压为1.8V/Cell,3小时率蓄电池单体放电终止电压为1.8V/Cell,1小时率放电池单体放电终止电压为1.75V/Cell。
技术参数
电动势
外电路断开,即没有电流通过电池时在正负极间量得的电位差,叫做电池的电动势。
端电压
电路闭合后电池正负极间的电位差叫做电池的电压或端电压。
电池容量
通常电源设备的容量用kV·A或kW来表示。然而,作为电源的VRLA电池,选用安时(A·h)表示其容量则更为准确,蓄电池容量定义为∫t0tdt,理论上t可以趋于无穷,但实际上当电池放电低于终止电压后仍继续放电,这可能损坏电池,故t值有限制,电池行业中,以小时(h)表示电池的可持续放电时间,觉的有C24、C20、C10、C8、C3、C1等标称容量值。
小电池的标称容量以毫安时(mA·h)计,大电池的标称容量则以安时(A·h)、千安时(kA·h)计,电信工业常取C10、C8等标称容量值。例如,常见的Deka电池12AVR100SH为12V单体,100 A·h容量,即可持续放电10h,电流为10A,共放出安时数为10*10=100 A·h(实际测试中,为使电流值保持恒稳,当电压变化时,应调整外电路负载,以便计量)。
科士达蓄电池6-FML-36
深圳科士达科技股份有限公司周三在全景网互动平台上回答投资者提问时介绍,由于铅酸蓄电池的综合性价比优势目前是其他类型电池无法比拟的,公司短期内不会考虑锂电池替代铅酸蓄电池作为公司UPS配套电池。
    下面我们对锂电池于铅酸蓄电池的优缺点做一下比较:
锂离子电池 VS  铅酸蓄电池 
1.可充电电池(碱性蓄电池——铅酸蓄电池) 
2.循环使用寿命(1200~2000次 ——500~900次) 
3.比能量(150W·h/kg——40W·h/kg) 
4.充电时间( 2~4h——快充3~6h(快速充电技术也尚未成熟) 慢充在8h以上) 
5.充放电电能效率(锂离子电池充放电电能转换效率可大于97%——铅酸蓄电池充放电电能量转换效率约为80%左右) 
6.价格(较高 24V/10Ah价格:750~1200元 ——较低 24V/12Ah价格:200~300元) 
7.体积 (体积小 锂离子电池的体积是铅酸蓄电池体积的2/3 ——体积大) 
8.重量 (重量轻 只有铅酸蓄电池的1/3~1/4 ——重量重 )
9.续航里程(动力——环保) 
10.生产及使用中均无污染(生产中有污染——铅酸蓄电池中存在着大量的铅,在废弃后若处理不当,将对环境产生污染)。 
11.锂离子电池(以恒流转恒压方式进行充电——锂电池易受到过充电、深放电以及短路的损害) 
12.充电与维护(复杂,维护成本高——简单,维护成本低 提供的开路)
13.电源(提供的开路电源小,串联较多——提供的开路电源大)
首先,在本系统中单节科士达蓄电池的充电是独立进行的,在每个充电模块完全可以结合每节深圳科士达蓄电池的运行参数及运行状态科学的对每解蓄电池进行充放电,避免了因蓄电池参数不一致引起过充电,欠充电,以及过放电等问题的发生,保证了电池的使用寿命。
  其二,在本系统中,每节科士达电池的检测和充电处于同一模块中,**的结合在一起。一方面电池检测部分可以通过控制充电部分轻易实现电池电压、内阻的检测。另一方面充电部分又可以根据检测单元测得参数(包括单电池内阻、电压、温度、PH值)对电池进行合理的充电。真正实现了按蓄电池充电曲线结合其运行状态进行管理的思路。
  其三,我们知道现在小容量高频开关电源的实现是很*的,对器件和工艺不需要很高的要求。同时也具有很高的可靠性。大家可以对比一下在方案一中以现今普遍采用220V/10A模块比较,其输出功率为电压280V*10A=2800W,而在蓄电池容量**过800AH系统中我们还需要采用输出电流为20A的模块,其输出功率更高达5600W,大的输出容量自然对高频器件和制造工艺提出了更高的要求,同时使可靠性降低。
科士达蓄电池直流系统的异常运行现象分析
1.科士达蓄电池直流母线电压过高或过低
(1)故障现象:音响信号“警铃”响;直流母线故障”光字牌亮;直流母线电压指示偏离允许值。
(2)故障处理:
1)检查电压监察装置的电压继电器动作是否正确。
2)观察充电器装置输出电压和直流母线绝缘监视仪表显示,或用万用表测量母线电压,综合判断直流母线电压是否异常。
3)调整充电器魄输出使直流母线电压和浮充电流恢复正常。
4)若直流母线电压异常,系充电器装置故障引起,则应停用该充电器,倒换为备用充电器运行。
2.科士达电池直流系统接地
(1)故障现象:音响信号“警铃”响;“直流母线故障”光字牌亮;直流系统绝缘监视装置的“绝缘降低”指示灯亮;测量直流母线正、负极对地电压,较不平衡。
(2)故障处理:为防止一点接地后又出现另一点接地,引起保护误动或拒动,或造成两较接地短路,烧坏蓄电池,故必须*消除直流系统一点接地故障。寻找接地点的方法、
原则和顺序如下:
1)寻找接地点的方法。采用瞬时停电法寻找接地点,即瞬时拉开某直流馈线的开关,又*合上(切断时间不**过3s)。拉开时,若接地信号消失,且各较对地电压指示正常,则接地点在该回路电。
2)寻找接地点的原则。①对于双母线的直流系统,应先判明哪一母线发生接地;②按先次要负荷后重要负荷、先室外后室内顺序检查各直流馈线,然后检查科士达蓄电池、充电设备、直流母线;③对次要的直流馈线(如事故照明、信号装置、合闸电源)采用瞬停法寻找,对不允许短时停电的重要馈线(如跳闸电源),应先将其负荷转移,然后再用瞬停法寻找接地点。
科士达蓄电池6-FML-36
科士达蓄电池充电前,请务必查阅所使用的充电器使用说明书。除了遵循充电器制造商的操作说明外,还需遵守以下预防措施:
必须佩戴适合的眼部、面部和手部防护设备。
必须在通风良好的地方进行充电。
将连接线连接至蓄电池前,将充电器和定时器旋至OFF,避免连接时产生危险的火花。
请勿给明显损坏或冻结的蓄电池充电。
将充电器连接至易事特蓄电池时:红色正极(+)连接至正极一端(+),黑色负极(—)连接至负极一端(—)。若蓄电池仍安装在汽车中,请将负极连接至发动机缸体作为接地线。并确保关闭点火装置和所有电器配件。(如汽车有正极接地线,请将正极连接至发动机缸体)。
确保连接到科士达蓄电池的充电器没有损坏、磨损或松动的迹象。
设定计时器,打开充电器,并慢慢提高充电速率直到达到您所需的安培值。
若科士达蓄电池发热,或产生强烈的气体,或喷出电解质,请降低充电速率或暂时关闭充电器。
移除连接线之前请务必保证将充电器旋至OFF,以防止产生危险的火花。
科士达蓄电池日常维护及保管方面是如何运用的?
关于保管
1.保管时请注意温度不要**过-20℃~+40℃范围
2.保管科士达电池时必须使电池在完全充电状态下进行保管。由于在运输途中或保存期内因自放电会损失一
部分容量,使用时请补充电。
3.长期保管时,为弥补保管期间的自放电, 请进行补充电。
在**过40C条件下保管时,对电池寿命有很坏影响,请避免!
4.请在干燥低温,通风良好的地方进行保管。5.如在保管或转移过程中电池包装不慎被水淋湿,应立即除掉包装纸箱,以避免被水打湿的纸箱成为
导体造成电池放电或烧坏正极端子。
日常维护
1.定期对电池进行检查,如发现有灰尘等外观污染情况时,请用水或温水浸湿的布片进行清扫。不要
用汽油、香蕉水等或油类进行清洗,另外请避免使用化纤布。
2.浮充时,电池充电过程中总电压或指示盘上电压表的指标值偏离下表所示基准值时(±0.05V/单
格)应调查原因并作处理。
科士达蓄电池6-FML-36
一、安全阀漏液
免维护科士达电池的安全阀在一定压力下起密封作用,若**过规定压力(开启压力),安全阀会自动打开放气,保证蓄电池安全。造成安全阀漏液主要原因如下:
1)加酸量过多,蓄电池处于富液状态,致使氧气转化的气体通道受阻,氧气增多,内部压力,**过开启压力,安全阀开启,氧气带着酸雾放出。若安全阀多次开启,酸雾就会在安全阀周围结成酸液。
2)安全阀耐老化性能变差。蓄电池在使用一段时间后,安全阀的橡胶会受氧气和硫酸腐蚀而老化,弹性下降,开启压力降低,甚至长期处于开启状态,造成酸雾,产生漏液。
安全阀漏液的处理方法有:
1)采用耐老化橡胶(如氟橡胶)制作的安全阀,以延长耐老化时间。
2)为保证安全阀的可靠,应定期更换安全阀。
3)改变安全阀结构,使其开启压力可调。目前,柱式安全阀是较为完善的结构,它使用的橡胶耐老化性能好,同时压力可调。当发现其老化(开启压力下降)时,可适当加以调整,开启压力,保证其密封性。
二、较柱端子漏液
深圳科士达蓄电池较柱与外壳盖之间的密封质量也是影响蓄电池循环寿命的主要因素之一。较柱的密封结构有树脂密封结构、树脂两次密封结构、机械压缩式密封结构、HAGEN**较柱密封结构。较柱密封普遍采用的方法是,先将较柱同蓄电池盖上的铅套管焊接在一起,再灌上一层环氧树脂密封胶密封。一般蓄电池使用一年以上就会有个别蓄电池较柱端子产生漏液,并且正极比负极严重,这是目前国内生产的蓄电池普遍存在的问题。通过对较柱端子漏液的蓄电池解剖发现,较柱端子已被腐蚀,硫酸沿着腐蚀通道在内部气压作用下,流到端子表面产生漏液。这种现象也叫爬酸或渗漏,端子腐蚀是在酸性条件下氧气腐蚀所致。
腐蚀产生的氧化铅和硫酸铅都是多孔状的,硫酸在内部气压作用下,会沿着腐蚀孔爬到外面而产生漏液。相对而言,腐蚀速度比较缓慢,因此要在使用较长一段时间后才产生漏液,同时正极腐蚀速度大于负极,因此正极漏液更严重。由于焊接一般采用的是乙炔氧气焊接,焊接时较柱表面会形成一层氧化铅,氧化铅很*同硫酸反应,因而更加快了腐蚀速度,缩短了产生漏液时间。解决较柱端子漏液措施有:
1)采用惰性气体保护性焊接(如氢弧焊),使焊接面不被氧化,延缓腐蚀速度。
2)加高较柱端子,延长密封胶层高度,延长产生腐蚀漏液的时间。
3)取消焊接密封方式,采用橡胶压紧密封,阻断氧气通道,延缓腐蚀速度。如果较柱端子密封高度设计合理,在蓄电池使用寿命期可以实现不漏液。
http://xdc789.b2b168.com

产品推荐